Computing the moments of k-bounded pseudo-Boolean functions over Hamming spheres of arbitrary radius in polynomial time

نویسندگان

  • Andrew M. Sutton
  • L. Darrell Whitley
  • Adele E. Howe
چکیده

We show that given a k-bounded pseudo-Boolean function f , one can always compute the cth moment of f over regions of arbitrary radius in Hamming space in polynomial time using algebraic information from the adjacency structure (where k and c are constants). This result has implications for evolutionary algorithms and local search algorithms because information about promising regions of the search space can be efficiently retrieved, even if the cardinality of the region is exponential in the problem size. Finally, we use our results to introduce a method of efficiently calculating the expected fitness of mutations for evolutionary algorithms. © 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Science Technical Report Computing the moments of k-bounded pseudo-Boolean functions over Hamming spheres of arbitrary radius in polynomial time

We show that given a k-bounded pseudo-Boolean function f , we can always compute the cth moment of f over regions of arbitrary radius in Hamming space in polynomial time using algebraic information from the adjacency structure (where k and c are constants). This result has implications for evolutionary algorithms and local search algorithms because information about promising regions of the sea...

متن کامل

Quadratization of Symmetric Pseudo-Boolean Functions

A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn) of n binary variables; that is, a mapping from {0, 1}n to R. For a pseudo-Boolean function f(x) on {0, 1}n, we say that g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending on x and on m auxiliary binary variables y1, y2, . . . , ym such that f(x) = min{g(x, y) : y ∈ {0, 1}m} for all x ∈ ...

متن کامل

Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization

Local search algorithms and iterated local search algorithms are a basic technique. Local search can be a stand along search methods, but it can also be hybridized with evolutionary algorithms. Recently, it has been shown that it is possible to identify improving moves in Hamming neighborhoods for k-bounded pseudo-Boolean optimization problems in constant time. This means that local search does...

متن کامل

Learning pseudo-Boolean k-DNF and submodular functions

We prove that any submodular function f : {0, 1}n → {0, 1, ..., k} can be represented as a pseudoBoolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Håstad’s switching lemma holds for pseudo-Boolean k-DNFs if all constants associ...

متن کامل

Computing Science WHICH SUBMODULAR FUNCTIONS ARE EXPRESSIBLE USING BINARY SUBMODULAR FUNCTIONS?

Submodular functions occur in many combinatorial optimisation problems and a number of polynomial-time algorithms have been devised to minimise such functions. The time complexity of the fastest known general algorithm for submodular function minimisation (SFM) is O(n6 + n5L), where n is the number of variables and L is the time required to evaluate the function. However, many important special...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 425  شماره 

صفحات  -

تاریخ انتشار 2012